

The Basics

Boyle's Law

$$P_1 V_1 = P_2 V_2$$

Charles' Law

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

Gay-Lussac's Law

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

Avogadro's Law

$$\frac{V_1}{n_1} = \frac{V_2}{n_2}$$

$$\frac{P_1 \, V_1}{T_1} \, = \, \frac{P_2 \, V_2}{T_2}$$

 P_1 , P_2 - Pressure, any units; V_1 , V_2 - Volume, any units; n_1 , n_2 - moles; T_1 , T_2 - Temp, $^{\circ}$ K

Combined Gas Law (alt.)

$$\frac{P_1 V_1}{n_1 T_1} = \frac{P_2 V_2}{n_2 T_2}$$

 $\frac{P_1 V_1}{P_2 V_2} = \frac{P_2 V_2}{P_2 V_2}$ This version of the Combined Gas Law incorporates Avogadro's Law.

Ideal Gas Law

$$PV = nRT$$

P - Pressure; V - Volume; n - number of moles; R - Ideal gas constant, see sidebar; T - Temp, °K

Ideal Gas Constant, R

The value of the ideal gas constant, R, depends on your units for pressure and volume:

- $R = 0.08206 \text{ L-atm/mole} \cdot \text{K}$
- R = 62.36 L-torr/mole-K
- $R = 8.314 \text{ L} \cdot \text{kPa/mole} \cdot \text{K}$

The Less Basic

Graham's Law of Diffusion

$$\frac{V_1}{V_2} = \sqrt{\frac{m_2}{m_1}}$$

 v_1, v_2 - Diffusion rate; m_1, m_2 - molar mass

Standard Temp & Pressure (STP)

STP is 1 atm pressure and 0°C.

1 mole of any gas at STP has a volume of 22.4 L

Molecular RMS Velocity

$$v_{\rm rms} = \sqrt{\frac{3RT}{m}}$$

You need to use this value for R so that the velocity will come out in m/s.

 v_{rms} - velocity, m/s; **R** - Ideal gas constant, 8.3145 J/mole•K; **T** - Temp, °K; **m** - molecular mass in **kg/mole**

Note the unusual units here.